

AiiDA [http://www.aiida.net] plugin for GOLLUM [http://www.physics.lancs.ac.uk/gollum]

[image: _images/AiiDA_transparent_logo.png]

[image: _images/gollum_logo.png]

Welcome to the AiiDA-Gollum documentation!

The aiida-gollum python package interfaces the GOLLUM transport code
(http://www.physics.lancs.ac.uk/gollum) with the AiiDA framework
(http://www.aiida.net). The package contains plugins for GOLLUM
itself and basic workflows. It is distributed under the MIT license
and available from (https://github.com/garsua/aiida-gollum/).

Acknowledgments:

The Gollum input plugin, parser, workflow and examples were developed
by Víctor Manuel García-Suárez.

We acknowledge support from the Spanish MINECO (project
FIS2015-63918-R), the Spanish Ministerio de Ciencia, Innovación y Universidades
(project PGC2018-094783-B-I00) and the EU Centre of Excellence “MaX -
Materials Design at the Exascale” (http://www.max-centre.eu).
(Horizon 2020 EINFRA-5, Grant No. 676598). We also thank the AiiDA
team for their help.

[image: _images/funding.png]

Contents:

Installation

	Installation

GOLLUM plugins

	Standard Gollum plugin
	Description

	Supported Gollum versions

	Inputs

	Outputs

	Errors

	Restarts

	Additional advanced features

GOLLUM Workflows

	Gollum Siesta workflow
	Description

	Supported Gollum versions

	Inputs

	Outputs

Indices and tables

	Index

	Module Index

	Search Page

Installation

It could be useful first to create and switch to a new python
virtual environment before the installation to avoid conflicts with
third-party packages.

Install the plugin by executing, from the top level of the plugin
directory:

pip install -e .

As a pre-requisite, this will install an appropriate version of the
aiida_core python framework.

Important

Next, do not forget to run the following command to make sure all other plugins are discovered and registered

reentry scan -r aiida

Standard Gollum plugin

Description

The AiiDA Gollum plugin is an AiiDA extension, written in Python, which
allows to run in a user friendly way highly automated transport simulations
with the Gollum code. It has two main parts, the input and the output, which
facilitate the design, analysis and postprocessing of transport calculations
within the AiiDA framework.

These docs are for version: aiida-0.12.0–plugin-0.1.0 of the plugin.

Supported Gollum versions

At least 2.0.0 version of the code, which can be downloaded from the Golum
webpage (http://www.physics.lancs.ac.uk/gollum/index.php/downloads).

Inputs

	settings, class ParameterData

The name of the localfolder that contains the Extended_Molecule and
Lead_* input files (in case they are necessary) and the path of the
(remote) directory where the Matlab MCR is located. For example:

emname = os.path.realpath(os.path.join(os.path.dirname(__file__),
 "../data"))+'/Extended_Molecule'
l1name = os.path.realpath(os.path.join(os.path.dirname(__file__),
 "../data"))+'/Lead_1'
l2name = os.path.realpath(os.path.join(os.path.dirname(__file__),
 "../data"))+'/Lead_2'
settings_dict={'additional_local_copy_list': [emname, l1name, l2name],
 'cmdline': '/share/apps/MATLAB/MCR/MCR_R2017b/v92/'}
settings = ParameterData(dict=settings_dict)

	parameters, class ParameterData

A dictionary with scalar and string variables and blocks, which are the
basic elements of the Gollum input file. The definition of each parameter
is simpler than in the Gollum original input file (it is not necessary
to specify the type of variable and the number of rows and columns):

'Mode': 1,
'Verbose': 0,
'HamiltonianProvider': 'tbm',
'Path_EM': './Extended_Molecule',

Complex data structures such as blocks with various rows and columns
are defined by using an appropriate key and Python’s multiline string
constructor. It is necessary to distinguish between numerical blocks
(NBlock):

'NBlock leadp': """
2 2 -1
2 2 1 """,

and string blocks (SBlock):

'SBlock Path_Leads': """
1 ./Lead_1
2 ./Lead_2""",

The only block that is defined differently is the atom block:

'atom': """
1 2 2
0 0 10
2 2 2 """

The first column of the atom block indicates the lead number or the
extended molecule (0), the second column the number of principal
layers in each lead (0 again for the extended molecule) and the third
column the number of atoms in each lead. From these numbers the plugin
constructs and writes in the input file the typical atom block.

Outputs

Different output nodes can be created by the plugin, according to the
calculation details. All output nodes can be accessed with the
calculation.out method.

The output parser gets information the Gollum output file (where the
output of the run is redirected) and from data files generated by
the run (transmission and open-channels files).

	output_parameters ParameterData
(accessed by calculation.res)

A dictionary with metadata, scalar result values, errors and warnings lists,
and time information:

{
 "gollum_version": "Version 2.0 GAMMA (Feb. 2018)",
 "oc_ef": 3.0,
 "oc_M": 6.0,
 "oc_m": 0.0,
 "tt_ef": 2.999997,
 "tt_M": 5.999995,
 "tt_m": 0.0,
 "start_of_run": "05-Jun-2018 16:59:41",
 "end_of_run": "05-Jun-2018 16:59:50",
 "total_time": 8.375386,
 "warnings": [],
 "errors": []
}

The data include the number of open channels at the Fermi level (oc_ef),
the maximum (oc_M) and minimum (oc_m) open channels, the transmission
at the Fermi level (tt_ef) and the maximum (tt_M) and minimum
(tt_m) transmission. All these values are converted to ‘float’. The
parser also distinguishes between spin-unpolarized and -polarized
calculations. In the former case it gives the values ou_ef, ou_M,
ou_m, tu_ef, tu_M and tu_m, for the up open channels and
transmission and od_ef, od_M, od_m, td_ef, td_M and
td_m for the down open channels and transmission, respectively.

The warnings list contains program warnings which do not stop the
execution of Gollum. The errors list contains the last line of the
output file when the execution stops for errors or for external reasons.

	output_array ArrayData

Contains the open channels and the transmission in an array form (the energy
in the x axis and the open channels or transmission in the y axis).

Errors

Errors during the parsing stage are reported in the log of the calculation
(accessible with the verdi calculation logshow command). They are
also stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

Restarts

A restarting capability is implemented following the basic idiom:

c = load_node(Failed_Calc_PK)
c2 = c.create_restart(force_restart=True)
c2.store_all()
c2.submit()

The partial.mat file is copied from the old calculation scratch
folder to the new calculation’s one.

This approach enables continuation of runs that may have failed due to
lack of time or other problems.

Additional advanced features

Additional settings can be specified in the settings input, of type
ParameterData, as explained before.

Some of the options that can be specified are summarized below. In each
case, after having defined the content of settings_dic, it can
be used as input of a calculation calc by doing:

calc.use_settings(ParameterData(dict=settings_dict))

The keys of the settings dictionary are internally converted to
uppercase by the plugin.

Adding command-line options

In order to add command-line options to the executable (particularly
relevant e.g. to tune the parallelization level), each option can be
passed as a string in a list, as follows:

settings_dict = {
'cmdline': ['-option1', '-option2'],
}

Note that very few user-level command-line options (besides those
already inserted by AiiDA for MPI operation) are currently implemented.

Retrieving more files

If there are additional files produced by the calculation that need to
be retrieved (and preserved in the AiiDA repository), they can be added
as a list as follows:

settings_dict = {
'additional_retrieve_list': ['aiida.EIG', 'aiida.ORB_INDX'],
}

These files are then copied from the remote folder to the local
repository.

Gollum Siesta workflow

Description

The GollumSiestaWorkchain workflow produces files with the
transmission and the number of open channels from the electronic
structure calculated with Siesta.

Important

In order for this workflow to work it is also necessary to install the aiida_siesta plugin (http://aiida-siesta-plugin.readthedocs.io/en/latest/)

The inputs to the Gollum workchain include the Siesta code, the Gollum
code, the structures of the leads and the extended molecule, the
protocol, the number of kpoints in the leads and the extended molecule
and some parameters.

The Gollum package can calculate transport properties such as the
transmission and the number of open channels either from tight-binding
or ab-initio simulations. In the latter case, it can use the Siesta
or QuantumEspresso-Wannier90 codes. This workflow presents an
example of transport calculation with the Siesta code. First, it
launches a Siesta calculation to simulate the leads, then another
Siesta calculation for the extended molecule and finally a Gollum
simulation to calculate the transport properties.

Supported Gollum versions

At least 2.0.0 version of the code, which can be downloaded from the Golum
webpage (http://www.physics.lancs.ac.uk/gollum/index.php/downloads).

Inputs

	siesta_code

A code associated to the Siesta plugin

	gollum_code

A code associated to the Gollum plugin

	structure_le, class StructureData

A Siesta structure for the leads.

	structure_em, class StructureData

A Siesta structure for the extended molecule.

	protocol, class Str

Either “standard” or “fast”. Each has its own set of associated
parameters.

	standard:

{
 'dm_convergence_threshold': 1.0e-4,
 'min_meshcutoff': 150, # In Rydberg (!)
 'electronic_temperature': "25.0 meV",
 'pseudo_familyname': 'si_ldapsf',
 'atomic_heuristics': {
 'Au': { 'cutoff': 100 }
 },
 'basis': {
 'pao-energy-shift': '100 meV',
 'pao-basis-size': 'DZP'
 }
 }

	fast:

{
 'dm_convergence_threshold': 1.0e-3,
 'min_meshcutoff': 80, # In Rydberg (!)
 'electronic_temperature': "25.0 meV",
 'pseudo_familyname': 'si_ldapsf',
 'atomic_heuristics': {
 'Au': { 'cutoff': 50 }
 },
 'basis': {
 'pao-energy-shift': '100 meV',
 'pao-basis-size': 'SZ'
 }
 }

	kpoints_le, class KpointsData

An array with the number of k-points along each direction in the leads

	kpoints_em, class KpointsData

An array with the number of k-points along each direction in the
extended molecule

	parameters, class ParameterData

Some parameters for the Gollum simulation (typically the leadp and
atom blocks).

Outputs

	open_channels ArrayData

The number of open channels of the first electrode (we assume at the
moment that both electrodes are equal). In case of a spin-polarized
calculation the output distinguishes between spin-up and down channels.

	transmission ArrayData

The transmission between electrodes. In case of a spin-polarized
calculation the output distinguishes between spin-up and down transmissions.

Index

 nav.xhtml

 Table of Contents

 		
 AiiDA plugin for GOLLUM

 		
 Installation

 		
 Standard Gollum plugin

 		
 Description

 		
 Supported Gollum versions

 		
 Inputs

 		
 Outputs

 		
 Errors

 		
 Restarts

 		
 Additional advanced features

 		
 Adding command-line options

 		
 Retrieving more files

 		
 Gollum Siesta workflow

 		
 Description

 		
 Supported Gollum versions

 		
 Inputs

 		
 Outputs

_images/AiiDA_transparent_logo.png

_images/funding.png
UNION EUROPEA

¥ ¥ GOBIERNO MINISTERIO
"Q' DE ESPANA DE ECONOMIA
A Y COMPETITIVIDAD
5 FONDO EUROPEO DE
DESARROLLO REGIONAL

"Una manera de hacer Europa"

2

UNION EUROPEA

MINISTERIO
DE CIENCIA
E INNOVACION ,
AGENCIA
FONDO EUROPEO DE ESTATAL DE ,
DESARROLLO REGIONAL INVESTIGACION

‘Una manera de hacer Europa*

DRIVING
THE EXASCALE
TRANSITION

_static/plus.png

_static/file.png

_images/gollum_logo.png
GOLLUM

Multi-terminal Charge, Spin and Heat
Transport Simulation Tools

_static/minus.png

